
Appendix 5: Details of statistical methods in the CRP CHD Genetics Collaboration (CCGC) [posted as supplied by

author]

Statistical methods: All hypothesis tests were conducted using two-sided P-values and uncertainties about the point

estimates were expressed using 95% confidence intervals (CIs). Studies contributing 50 or fewer participants, or 10 or

fewer outcomes to any particular analysis were excluded. Primary analyses were conducted using an additive model for the

effect of a pre-specified risk allele for each single nucleotide polymorphism (SNP), coded 0,1 or 2. Associations between

SNPs and loge CRP levels and other continuous markers were assessed by calculating the standardized differences (ie,

standard deviation [SD] scale) in levels of each marker per additional copy of the risk allele, adjusted for ethnicity in a random

effects meta-analysis model, allowing for heterogeneity across studies.1 Details of the statistical methods used for the meta-

analysis of exposure-outcome associations2–4 and correction for potential bias due to regression dilution and within-person

variability,5 have been described previously.

SNPs and Haplotypes: Five SNPs (rs3093077, rs1205, rs1130864, rs1800947 and rs2794521) identified in previous

work6 as representing the variation in the CRP gene in European descent populations, were pre-specified for use in the

current analyses. Using genetic data available on up to 37 further SNPs, we confirmed the validity of these tagging SNPs

and generated study-specific haplotypes using fastPHASE software.7 We found that the genotypes of 99% of individuals of

European descent could be determined uniquely using 5 candidate haplotypes, and that the inclusion of further SNPs was

only informative where data were not available on the tagging SNPs. Furthermore, only 4 SNPs were required to generate

the haplotypes, as the 5th could be inferred by mutual exclusion. Table A in appendix 1 lists the relevant haplotypes and

haplotype frequencies. Where studies measured SNPs other than the 5 pre-specified tagging SNPs, we were able to use

information on linkage disequilibrium (LD) from contributing studies, supplemented by SeattleSNP8 and HapMap,9 to assign

participants to equivalent haplotype groups using different tagging SNPs. The LD threshold (r2) for each pair of SNPs was

defined, a priori, as 1 (ie, only tagging SNPs in complete LD with the principal SNPs were used to generate haplotypes).

Sensitivity analyses using SNPs in lower LD did not enable the inclusion of any additional haplotype data. Only directly

genotyped SNPs were used for both the haplotype and SNP-based analyses. Due to missing data in certain individuals on

the rs3093077 SNP (or relevant tagging SNPs) it was not possible to discriminate between haplotypes 2 and 3. Therefore

these individuals were allocated to haplotype 6. Similarly, individuals without the rs1800947 SNP were placed in haplotype 7

(as it was not possible to allocate these individuals to haplotypes 4 and 5, Table A in appendix 1). Individuals were excluded

from haplotype analyses if insufficient SNP data were available to determine haplotypes, accounting for approximately 1%

of the overall population. Due to differences in SNP LD, individuals of non-European descent, comprising approximately 9%

of the available data (15,285 participants) were also excluded from haplotype analyses.

Haplotype associations with loge CRP levels and CHD risk were conducted within each study based on a model assuming

additive effects across haplotypes, with two copies of haplotype 1 defined as the reference group. The study-specific esti-

mates of the additive haplotype effects were then combined across studies by multivariate random effects meta-analysis to

account for both the within and between study correlations in the haplotype effects while obtaining the pooled estimates and



their uncertainty.10 This model assumes that the effect of each haplotype is additive over haplotype 1. For example, based

on our assumptions, individuals carrying 1 copy of haplotype 2 and 1 copy of haplotype 4 would have a mean loge CRP

level equal to the sum of the haplotype 2 and haplotype 4 effects, relative to haplotype 1.

Analyses of incident and prevalent outcomes in prospective cohort studies: Where studies provided time-to-event

data for incident cases and baseline data on prevalent CHD, we conducted a two sets of analyses: (i) Cox regression for

time-to-incident CHD among the initially disease-free participants, and (ii) logistic regression of prevalent outcomes in the

cohort with those who were disease-free at baseline within that study taken as controls. The two estimates obtained from the

prospective study were then combined using inverse-variance weights, prior to combining with estimates from other studies

in the overall meta-analyses. These methods enabled us to maximize the amount of data available for analyses of SNP-

CHD associations and haplotype-CHD associations. Sensitivity analyses excluding prevalent cases or using only logistic

regression for all cases were conducted to test these assumptions, and no substantial differences were seen. Analyses of

SNP-CRP, haplotype-CRP and CRP-CHD associations were limited to participants without known cardiovascular disease at

time of CRP measurements.

Mendelian randomization analyses: Using a Bayesian framework with vague independent N (0, 102) priors on aver-

age phenotype level and regression parameters, and vague independent U(0, 20) priors on standard deviation parameters

in normal distributions, we generated a causal estimate for circulating CRP on CHD, using a SNP-based method and a

haplotype-based method for predicting levels of CRP.11 Within each study, the participants were subdivided into groups

based on genotype or haplotype. Genotypes were defined by the hierarchical addition of up to 4 SNPs: rs3903077, rs1205,

rs1130864 and rs1800947. Genotype groups were also subdivided by ethnicity (European descent [ED], African descent

[AD] or Asian descent [OD]).

For each subgroup j, we estimated the mean level of phenotype ξj assuming that, for each individual i in subgroup j,

the measured values of phenotype xij came from a normal distribution with mean ξj and variance σ2, assumed to be com-

mon across subgroups. In the SNP-based analysis, the mean level of phenotype ξj for people with gjk variant allele copies

for each SNP k(1 ≤ k ≤ K), was estimated using an additive model, with αk representing the change in phenotype per

allele change in SNP k:

ξj = α0 +

K∑
k=1

αkgjk (1)

In the haplotype-based analysis, the mean level of phenotype ξj for people with haplotypes h1j and h2j , was similarly esti-

mated using additive effects for each haplotype.

The probability of an event in subgroup j, was estimated assuming a binomial model for the number of events nj from

total number at risk Nj . Using a logistic model, and assuming a linear relationship between the log-odds of an event and

mean levels of phenotype ξj , the coefficient β1 for an increase in log-odds of event per unit increase in phenotype was



estimated as follows:

xij ∼ N (ξj , σ
2)

nj ∼ B(Nj , πj)

logit(πj) = β0 + β1ξj (2)

We now consider multiple studies, indexed by m. Where studies have not measured (or shared data on) circulating CRP,

we used the combined estimates of genetic association αkm with CRP across studies that provided relevant data, assuming

the change in phenotype per allele change in SNP is consistent across studies. We used a random effects meta-analysis

model that imposed a normal distribution on study-level parameters αkm with mean µαk and variance ψ2
k for each SNP

k(1 ≤ k ≤ K). The resulting predictive distributions for the gene - CRP association parameters formed an implicit prior for

the studies without circulating CRP data:

ξjm = α0m +

K∑
k=1

αkmgjkm

αkm ∼ N (µαk, ψ
2
k) (3)

To obtain a single causal estimate of the CRP - CHD association across studies, we conducted both a fixed effect and

random effects meta-analysis. In the fixed effect meta-analysis, the causal parameter, β1 was the same for each study m:

xijm ∼ N (ξjm, σ
2
m)

njm ∼ B(Njm, πjm)

logit(πjm) = β0m + β1ξjm (4)

In the random-effects meta analysis, a normal distribution was imposed on the study-level causal effect parameters, with

the mean of this distribution taken as the parameter of interest. Study-level estimates from AD and OD populations were

combined only using a fixed effect model due to insufficient data. All Bayesian models were fitted using WinBUGS.12

Convergence was assessed through visual examination of trace plots, by assessment of Monte Carlo error, and by running

multiple chains from dispersed starting values. At least 60 000 iterations were used for all analyses, with the first 10 000

iterations discarded as "burn-in".

Strength of instruments: Instrument strength was assessed by F statistics in the regression of loge(CRP) levels on the

genetic instruments. The F statistic for the SNP-based model for all participants is 89.2 on (16, 98460) degrees of freedom

and for the haplotype-based model for European Descent populations is 239.8 on (6, 94516) degrees of freedom.



Censoring of outcomes: For participants who had multiple events (e.g. two CHD events at separate time points, or a

CHD event followed by another type of event such as a stroke or death from cancer), analyses in the CCGC focused on first

events.13 Thus, in an analysis of CHD events, participants were followed until their first event, or censored at the time of

other non-fatal cardiovascular events, such as stroke, or death from other causes. Individuals were not censored at the time

of cardiovascular investigations or interventions, such as angiography or coronary bypass operations, or at the diagnosis

of angina. The rationale for this was that major cardiovascular events, such as first non-fatal MI or stroke, may disrupt the

association between baseline risk factors and subsequent disease risk. The incidence of angina and coronary interventions

was, however, not recorded reliably enough in sufficient studies to consider censoring for them. The potential biases that

arise through these decisions on censoring were addressed through sensitivity analyses and by implementing alternative

censoring criteria. In general, such changes had only minimal effects.

Inclusion of tabular data: Some of the studies listed in Table B in appendix 1 elected to share tabular data on CRP

SNPs and CHD risk. These data were included in the SNP-based analyses and incorporated via a univariate meta-analyses

of risk ratios for CHD. Similarly, these estimates were incorporated into the Bayesian estimates of the causal role of CRP

in CHD (using genetic data, as outlined above). Due to the unavailability of plasma CRP measures in the these studies,

the mean CRP levels in each genotype group (combined from the remaining studies) were used as estimates, as described

above. Sensitivity analyses excluding studies that shared tabular data did not alter the findings.

Important conversions: A unit higher loge CRP corresponds approximately to a 3-fold higher CRP: the standard deviation

of loge CRP level was 1.057, and e1.057 = 2.878. Conversions were always done to at least three decimal places for

accuracy.

Long-term associations of SNPs with circulating CRP: To assess whether CRP genetic variants consistently correlate

with circulating CRP levels over time, we used repeat measures of CRP from participating studies to assess the evidence

of SNP*time interactions. Thus for each study with repeat CRP measurements, we regressed repeat measurements of loge

CRP, on SNP, time, SNP*time and ethnicity, and combined the study-specific estimates using random effects meta-analysis.

Figure D in appendix 3 shows the SNP-CRP association plotted over time using the combined regression coefficients: the

relationships between CRP SNPs and circulating loge CRP remain fairly constant over time.

Sensitivity analyses: To investigate the reliability of the results, a number of sensitivity analyses were undertaken. We

repeated the primary analyses excluding studies and SNPs out of Hardy Weinberg Equilibrium, and with an F-statistic less

than 10. In order to verify that our choice of an additive model for SNP effects was appropriate, we conducted a model

free analysis (ie, 2 degrees of freedom test) of SNP - CRP and SNP - CHD effects (Figure L in appendix 3). The ratio

(referred to as λ) of the effect contrast between the heterozygotes and homozygotes (versus common homozygotes), can

range from 0, suggesting a recessive model, to 1, suggesting a dominant model. Values of 0.5 correspond to a co-dominant

or additive model.14 For these analyses, λ was estimated from the summary estimates for the SNP - CRP associations, on

the assumption that these would better represent the appropriate model for Mendelian randomization analyses. As shown in



Figure L in appendix 3, the additive model was appropriate for all four of the principal SNPs. All analyses were conducted

using random and fixed effects analyses (the latter presented in Figures C, G, I and K in appendix 3). Finally, subgroup

analyses were conducted for each step of the analyses, including by different age groups, by sex, ethnicity and geographical

region, genotyping and assay methods, and excluding participants on cardiovascular medications at baseline. Details on

methods used for subgroup analyses are presented separately.15
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